Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep Med ; 5(3): 101472, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38508140

RESUMO

Anaplastic large cell lymphoma (ALCL) is an aggressive, CD30+ T cell lymphoma of children and adults. ALK fusion transcripts or mutations in the JAK-STAT pathway are observed in most ALCL tumors, but the mechanisms underlying tumorigenesis are not fully understood. Here, we show that dysregulated STAT3 in ALCL cooccupies enhancers with master transcription factors BATF3, IRF4, and IKZF1 to form a core regulatory circuit that establishes and maintains the malignant cell state in ALCL. Critical downstream targets of this network in ALCL cells include the protooncogene MYC, which requires active STAT3 to facilitate high levels of MYC transcription. The core autoregulatory transcriptional circuitry activity is reinforced by MYC binding to the enhancer regions associated with STAT3 and each of the core regulatory transcription factors. Thus, activation of STAT3 provides the crucial link between aberrant tyrosine kinase signaling and the core transcriptional machinery that drives tumorigenesis and creates therapeutic vulnerabilities in ALCL.


Assuntos
Linfoma Anaplásico de Células Grandes , Transdução de Sinais , Adulto , Criança , Humanos , Transdução de Sinais/genética , Quinase do Linfoma Anaplásico/genética , Quinase do Linfoma Anaplásico/metabolismo , Linfoma Anaplásico de Células Grandes/genética , Linfoma Anaplásico de Células Grandes/metabolismo , Linfoma Anaplásico de Células Grandes/patologia , Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Transformação Celular Neoplásica , Carcinogênese/genética , Fator de Transcrição STAT3/genética
2.
G3 (Bethesda) ; 14(3)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38253712

RESUMO

Transcriptional initiation is among the first regulated steps controlling eukaryotic gene expression. High-throughput profiling of fungal and animal genomes has revealed that RNA Polymerase II often initiates transcription in both directions at the promoter transcription start site, but generally only elongates productively into the gene body. Additionally, Pol II can initiate transcription in both directions at cis-regulatory elements such as enhancers. These bidirectional RNA Polymerase II initiation events can be observed directly with methods that capture nascent transcripts, and they are also revealed indirectly by the presence of transcription-associated histone modifications on both sides of the transcription start site or cis-regulatory elements. Previous studies have shown that nascent RNAs and transcription-associated histone modifications in the model plant Arabidopsis thaliana accumulate mainly in the gene body, suggesting that transcription does not initiate widely in the upstream direction from genes in this plant. We compared transcription-associated histone modifications and nascent transcripts at both transcription start sites and cis-regulatory elements in A. thaliana, Drosophila melanogaster, and Homo sapiens. Our results provide evidence for mostly unidirectional RNA Polymerase II initiation at both promoters and gene-proximal cis-regulatory elements of A. thaliana, whereas bidirectional transcription initiation is observed widely at promoters in both D. melanogaster and H. sapiens, as well as cis-regulatory elements in Drosophila. Furthermore, the distribution of transcription-associated histone modifications around transcription start sites in the Oryza sativa (rice) and Glycine max (soybean) genomes suggests that unidirectional transcription initiation is the norm in these genomes as well. These results suggest that there are fundamental differences in transcriptional initiation directionality between flowering plant and metazoan genomes, which are manifested as distinct patterns of chromatin modifications around RNA polymerase initiation sites.


Assuntos
Arabidopsis , Cromatina , Animais , Cromatina/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Transcrição Gênica , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Sítio de Iniciação de Transcrição , Plantas/genética
3.
bioRxiv ; 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37961418

RESUMO

Transcriptional initiation is among the first regulated steps controlling eukaryotic gene expression. High-throughput profiling of fungal and animal genomes has revealed that RNA Polymerase II (Pol II) often initiates transcription in both directions at the promoter transcription start site (TSS), but generally only elongates productively into the gene body. Additionally, Pol II can initiate transcription in both directions at cis-regulatory elements (CREs) such as enhancers. These bidirectional Pol II initiation events can be observed directly with methods that capture nascent transcripts, and they are also revealed indirectly by the presence of transcription-associated histone modifications on both sides of the TSS or CRE. Previous studies have shown that nascent RNAs and transcription-associated histone modifications in the model plant Arabidopsis thaliana accumulate mainly in the gene body, suggesting that transcription does not initiate widely in the upstream direction from genes in this plant. We compared transcription-associated histone modifications and nascent transcripts at both TSSs and CREs in Arabidopsis thaliana, Drosophila melanogaster, and Homo sapiens. Our results provide evidence for mostly unidirectional Pol II initiation at both promoters and gene-proximal CREs of Arabidopsis thaliana, whereas bidirectional transcription initiation is observed widely at promoters in both Drosophila melanogaster and Homo sapiens, as well as CREs in Drosophila. Furthermore, the distribution of transcription-associated histone modifications around TSSs in the Oryza sativa (rice) and Glycine max (soybean) genomes suggests that unidirectional transcription initiation is the norm in these genomes as well. These results suggest that there are fundamental differences in transcriptional initiation directionality between flowering plant and metazoan genomes, which are manifested as distinct patterns of chromatin modifications around RNA polymerase initiation sites.

4.
Plant Cell ; 30(1): 15-36, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29229750

RESUMO

The transcriptional regulatory structure of plant genomes remains poorly defined relative to animals. It is unclear how many cis-regulatory elements exist, where these elements lie relative to promoters, and how these features are conserved across plant species. We employed the assay for transposase-accessible chromatin (ATAC-seq) in four plant species (Arabidopsis thaliana, Medicago truncatula, Solanum lycopersicum, and Oryza sativa) to delineate open chromatin regions and transcription factor (TF) binding sites across each genome. Despite 10-fold variation in intergenic space among species, the majority of open chromatin regions lie within 3 kb upstream of a transcription start site in all species. We find a common set of four TFs that appear to regulate conserved gene sets in the root tips of all four species, suggesting that TF-gene networks are generally conserved. Comparative ATAC-seq profiling of Arabidopsis root hair and non-hair cell types revealed extensive similarity as well as many cell-type-specific differences. Analyzing TF binding sites in differentially accessible regions identified a MYB-driven regulatory module unique to the hair cell, which appears to control both cell fate regulators and abiotic stress responses. Our analyses revealed common regulatory principles among species and shed light on the mechanisms producing cell-type-specific transcriptomes during development.


Assuntos
Cromatina/metabolismo , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Células Vegetais/metabolismo , Plantas/genética , Arabidopsis/genética , Sequência Conservada/genética , Solanum lycopersicum/genética , Medicago/genética , Meristema/genética , Oryza/genética , Epiderme Vegetal/citologia , Análise de Sequência de DNA , Especificidade da Espécie , Fatores de Transcrição/metabolismo , Transposases/metabolismo
5.
Methods Mol Biol ; 1675: 183-201, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29052193

RESUMO

Identifying and characterizing highly accessible chromatin regions assists in determining the location of genomic regulatory elements and understanding transcriptional regulation. In this chapter, we describe an approach to map accessible chromatin features in plants using the Assay for Transposase-Accessible Chromatin, combined with high-throughput sequencing (ATAC-seq), which was originally developed for cultured animal cells. This technique utilizes a hyperactive Tn5 transposase to cause DNA cleavage and simultaneous insertion of sequencing adapters into open chromatin regions of the input nuclei. The application of ATAC-seq to plant tissue has been challenging due to the difficulty of isolating nuclei sufficiently free of interfering organellar DNA. Here we present two different approaches to purify plant nuclei for ATAC-seq: the INTACT method (Isolation of Nuclei TAgged in specific Cell Types) to isolate nuclei from individual cell types of the plant, and tissue lysis followed by sucrose sedimentation to isolate sufficiently pure total nuclei. We provide detailed instructions for transposase treatment of nuclei isolated using either approach, as well as subsequent preparation of ATAC-seq libraries. Sequencing-ready ATAC-seq libraries can be prepared from plant tissue in as little as one day. The procedures described here are optimized for Arabidopsis thaliana but can also be applied to other plant species.


Assuntos
Arabidopsis/genética , Cromatina/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Núcleo Celular/genética , Biblioteca Gênica , Genoma de Planta , Transposases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...